WAVES OF ENVELOPES IN ELECTRON STREAMS
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We study stationary waves of envelopes in a nonrelativistic electron stream on a fixed ion
background. It is shown that the velocity of the stationary wave of an envelope is always
equal to the velocity of the unperturbed electron stream. In the adiabatic approximation it
is found that each perturbation of the envelopes propagates with velocity of the unperturbed
stream. The result is of interest for the theory of nonlinear waves in dispersive media.

1. In recent years there have been investigations dealing with the fact that for nonlinear wave pro-
cesses in dispersive media the most characteristic effects evidently are various effects of nonlinear self-
stress [1-7]. The latter include, for example, the self-focusing of stationary-wave beams [2]. In the non-
stationary case, effects of self-action appear as a nonlinear space—time deformation of amplitude and phase
of the envelopes of a wave packet [3, 4, 6, 7]. This allows us to treat nonstationary effects of self-action
as a propagation into the medium of peculiar waves of the envelopes. In a number of cases the envelope
waves undergo accumulated distortion, and for certain conditions Reimann envelope waves are possible.

In a medium with a relaxation nonlinearity, shock waves of the envelopes can exist [7].

For a consideration of the effects of self-action in nonlinear optics it is usual to assume the presence
of a cubic nonlinearity in the medium. Of course this does not exhaust all the possibilities in nonlinear
media, in which self-action effects are possible. In particular, we should take note of dispersive media
with a hydrodynamiec nonlinearity (v V) v, where v is the velocity and V is the dell operator [8, 9]. The
quasishock waves considered in [8] are essentially shock waves of the envelopes. In [9], it is shown that
waves of finite amplitude of ionic sound in a plasma experience self-action, leading to the decay of the
homogeneous wave front. This effect is similar to self-focusing in nonlinear optics [2, 5]. All of this indi-
cates the advisability of studying wave processes in dispersive media with a hydrodynamic nonlinearity in
terms of the nonlinear self-action.

The aim of the present work is to attempt to construct a theory in which wave processes in electron
streams can be discussed as a space—time deformation of the envelopes.

2. The principal results of the linear theory of homogeneous wave processes in a nonrelativistic
electron stream on a fixed ion background reduces to the following. Each plane perturbation of the stream
fx, t) can be represented in the form /
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Here, v, is the velocity of the unperturbed electron stream, wp is the plasma frequency, and Egs.
(2.2) and (2.3) determine the fast and slow waves of the space charge, respectively. Transforming (2.1), we
obtain

f(z, t) = cos %’x-f((), t—%)
i.e.,
fE+ht+v)y=f(r,f) @=2n/op !=r1)

The latter indicates that, moving with velocity of the unperturbed stream, the perturbation repeats
itself in time 7. It is clear that the propagation of such a perturbation can conveniently be described fol-
lowing the space—time deformation of its envelope. Similarly to what has been done previously, we have

f(-"a t) = cos wptf (z — vy, 0)

Thus, in the linear theory the envelope of a wave packet moves, without being deformed, with velocity
of the unperturbed stream. This result follows from the law of dispersion of the waves of the space charge.
On the other hand it attests to the advantage and visualizability of the representation of envelope waves in
the eleetron stream.

3. For an investigation of nonlinear wave processes in an electron stream on a fixed ion background
we initially have the following system of equations:
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where v is the velocity of the electron stream, ¢ is the electrostatic potential, n is the electron density,
ny is the ion density, e is the absolute value of the electron charge, and m is the electron mass.

In (3.1), we make the substitution of variables (9, 10]

z = (z — ut) k*, 1z, = (x — uyt) k*
E* Op 0.2 = 4ne’ng
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where u and u, are constants, and v; is the velocity of the unperturbed stream.

The original system becomes the following system of equations:
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Here, we have introduced the notation

v —u1 n Uy — up
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4. Let /8%y = 0. This indicates that we seek solutions of (3.2) in the form of plane stationary waves

&0 /dr? =21V D—1) (4.1)
whefe & = V2. We note that sgn (v—u) = sgn {vg— ), so that V > 0.
Integrating, we obtain
(@D /dz)? =4{A— (VD —1)% =4F (A, ®) (F(4, D)=4 — (VD —1p) (4.2)
Hence
x1+9=ism% 4.3)
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Here, A and ¢ are constants of integration. The guantity A corresponds to the amplitude of the wave,
9 corresponds to its phase. For the condition

04 <t

Eq. (4.3) determines the periodic function

O =04, +06) (4.4)
Its period equals 27.

5. We will seek solutions of the system (3.2) in the form of a longwave perturbation of the stationary
wave moving with velocity vy . i

Using Eq- (4.4) for this, instead of the two functions V({xy, x5} and I{x;, x,)
we introduce into the investigation three functions

P OAXy, X905 (X4, X9), and I{xy, x5). Imposing on A and 6
the additional conditions

dtD
dzy d:cg ( + V(D)z azl
we obtain a system of equations, equivalent to (3.2):
94 & | 90 3 40 d o o (5.1)
(611 EZ) + . oz axl)d) = T im znd—xz V(D
94 8 | 39 9\ _ ©d (3D 2
(azxaA + 5::—1_6_50—;}01: 2/1(1/(1)—1)—6—117—:1—@(6351) -2
or _ a1 dl
Oz dxz(V(F) T dm {5.3)
From (4.1) and (4.2), we obtain
POID 8D 2 (0O rOIO D d acp)__sz
2204 ~ 81,04 (811)—_ * Pz2dm azlﬁ'afz(azl dz
Therefore, having solved the system (5.1), (5.2), for 5A/08x; and 56/ 5%y, we have
. dV@ 1 I—1
222 = —2 % (T/% )+2c1) = (5.4)
90 D (dd dV® b [ F—1  d (60N
== (B 252 2 - () 6-5)
6. In order to calculate solutions of the system (5.3)-(5.5), we use the method of averaging [11]
order to do this, we represent the sought functions in the form of the series
A(zy, ) = Ag(z) + 2 A (zy, 7o)
=1
0 (21, 25) = B0 (22) + D) 04 (4, 2,) 6.1)
k=1
I{zy, 25) = Iy (x5) + Z.Ik (21, 25)
k=1

where Ay, 0, and I, are slowly varying functions, and A Xq5 X9)y O(Xys X9), and I (x,, X,) are quantitiés of
the k-th order of smallness, rapidly oscillating with respect to x; and slowly varying with respect to x,.

Differentiating by parts, from (5.4) and (5.3), we obtain
dA a4 1 dV D AV dl =
220 4292 =4 L (VB 42 (VD) + 4L — ) o e TR A et VD) 6.2)
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We expand all the functions containing &(A, ) in a Taylor series in the neighborhood of the point (A,

6y)
© = D(dy, 0) + 4, DLl Wy WU B,
= e —— 8V ® (o, B AV D (A, 8 6.3
V&= VT, 0 + 4, ";A" )4, VO )
1 1 a 1 F] 1
— e 4 g4 %1 LA S
Vo Vo (4, e(,)+ 104 V@ (Aq, 8o) T L 921 Y'E (4, Bo)
Substituting (6.1} and (6.3) into Eq. (6.2) and discarding quantities of second order of smallness, we
obtain
= 8 = d -
gx—‘?ﬁ—i‘—f;" = 21(10]/@) —2= (VO + 25 (1LVD) +
3V VD VD oY ®
+2a%[10 (A VO g2V A )J 25;1(A ATS }9/11
2 (‘i—Ip)dV(;D dV(D 4r
+= T +2(u *V‘:D) 3 (6.4)
Equating in (6.4) terms of the same order, we obtain
3.171 ( V(D) 1 Vé =0
Hence, I; =1 and
A1, dAs 0 = iV o (6.5)
| Tt = e VO -
Similarly to what has been done previously, from (5.5) and (5.3), we have
3 - L 0 _ 1 &0 d — 19D d (60 (6.6)
an = T Yo 94 T4em am 0 T 2V D) 335 H(Tm)
oh d 4 idAs & | dB @\ 1
e s (Foar rﬂ“‘f/a 6.7)
Averaging (6.5) over the fast oscillations, we obtain
dAq dA @ =
dzz, = ZLL Zﬂ—z G—A <V(D> (6 '8)
Here, the brackets denote averaging over x;:
: a+ Vay _
= 1 V Gdd An
Vo = — e =1 +
. 2VF (A, @ 2
oV VY F (4, ©)

Thus, Eq. (6.8) gives
dAy
Tor (1 +u)y=0

Two cases are possible: u=—1 andu = —1.

7. We consider the case u = —1. This denotes that the longwave perturbation moves with velocity

Uy = vp. Integrating Eq. (6.7), we obtain

d Ao Vo — a8 1
e aA are sin V—o 70 —V_CF—

(7.1)

From the condition < n/ny > = 1, it follows that the constant of integration must be set equal to zero.

Substituting (7.1) into (6.6) and averaging over the fast oscillations, we have
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d6 / 0P YD 1 4D 1> d40/2aVcDoar Smlfcp_1> ddo / 3D aY®
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Integrating by parts, we obtain

db Ao 1 Ay A1 1 A (7.2)
dzz ~ (VAO AgV ln2 V4, >
Hence
2 (24 -+ 1 {— 4o b (7 ,3)
= = — A
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As is seen from (7.3), the longwave perturbation of the amplitude of the stationary wave leads to dis-
tortion of the phase of the latter.

8. We consider the case u = —1. Here, A = const. Equation (6.7) implies

I = w  dbn 8.1)
1= V‘ED—E

Substituting (8.1) into Eq. (6.6), and averaging over the fast oscillations, we obtain

s 20 4D P
E(—u~<ln®> 5 34071 6z1 2“V(D>T2 A >=0

We can verify that the expression in parentheses does not equal zero. Therefore, 6, = const, with
Eq. (8.1) giving I; = 0. Thus, if uy # v, the longwave perturbation of a stationary wave in the first approxi-
mation is absent. We show that in each approximation for u, = v;, the perturbation is absent. We note that
all quantities of the form

d dA1 8 del a
7l @ = (G + ) HO)

are of second order of smallness.

Equations of the second approximation have the form

84 | dA [
RS AL R o

0z1 dzz
692__ I, 80 1 20 d 100 d /00
6::1—_————1/(58—/1__2—_6A6x1?;(®+2uV(D)+7ﬁ?i?z(5?1)
O _ g4 (i o a8 o)
o1 dzz "/6‘_ \dra A dxz 0x1 Vﬁ

This system of equations coincides with (6.5)-(6.7), if in it we replace A,, 6, Ay, 64, and Iy, by, re-
spectively, Ay, 61, Ay, 6> and I;. Similarly to the preceding, we obtain

A;=06,=1,=0, A4A,=4,(z), 6,=10,(z)

By induction it is easy to show that all the quantities of the series (6.1), beginning with the first and
higher, equal zero. Thus, the stationary wave of the envelope can move only with velocity of the unperturbed
stream.

9. The results obtained can be understood by analyzing the law of dispersion of waves of the space
charge

B/e2="2t(w)/ v’ 9.1)
where

elw)=01+aop/0)
or

olk=v,Faeplk (9.2)

277



We note that the analysis usually used for the expansion of the function &(w)in powers of w is not used
here, since for w = 0, there is a singularity. It is shown below that Egs. (9.1) and (9.2) are simultaneously
also a nonlinear law of dispersion. It is characteristic that the wave amplitude does not appear in the dis-
persion law. For w— or k — « the dispersion vanishes and the phase velocity approaches the velocity of
the unperturbed stream vy.

We show that the character of the envelope waves in an electron stream is due to the final character-
istics of the dispersion relations (9.1), (9.2).. It is not difficult to verify that the initial system (3.1) can be
found from a variational principle, in which the density of the Lagrangian function

o= () - {2 vt et 03

where

0

vz, tydx'

RO R

Pz, t) =
C(t)= % v (%0, 1) — — ? (%0, 1)

The generalized coordinates’are the field variables n(x, t), ¥(x, t), and ¢ (x, t}. As was shown, the
system (3.1) admits a stationary solution, in which all the quantities are functions of the combinations kx —
wt. For perturbations having wavelengths much greater than the wavelength of the stationary wave, the
amplitude A, the wave number k, and the frequency w are slowly varying functions of the time and the coor-
dinate. We can therefore assume that a locally stationary solution holds at each point; however, the am-
plitude, the wavelength, and the frequency vary from point to point. In [12], it is shown that averaged equa~
tions for the slowly varying functions A, k, and w are obtained from the averaged Lagrangian by variation
with respect to A, k, and w.

Substituting the stationary solution into the Lagrangian and averaging over the period of the station~
ary wave, we have

(0> = g {(F) D —emp<w> (9.4)

In (9.4), we take into account that variation with respect to n gives the equation of motion
ap , 4 [op\_ e
2 7@?) =ZgrCw (9.5)

Substitution of the stationary solution into it transforms (9.5) into an identity, and causes the expres-

sion
ap 1 /op\2? ; ~

<mn [7{ +3 <£) } — epn — mnC (t)>

to vanish.
For the stationary wave
__ (kvo — @)?m Wp Y
because
T — ut 4]
.’Elzﬂ)p IUO—'ul] == [kvof-(l)|(kx ——Cl)t)

The function & = &(A, x4 +9) is defined by Eq. (4.3). Its properties are described, for example, in
[8]. Since the period ® equals 27 for all values of the amplitude A(0 < A < 1), we obtain

[kvy — @ | = ©p

i.e.,

(9.6)

¢ =T (4, hz — ot - 8) + 1}
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Thus, the linear dispersion equation is simultaneously also nonlinear. These are the specific prop-

erties of the problem under consideration.

Substituting (9.6) into (9.4) and averaging, we obtain

2xeng?
A

<L> = - 2

Using the method of [12], we obtain the Euler equation for the averaged Langrangian L

or
#-25m=0  mlawm —2F)=0
Hence, it follows that
A | E* = const ©.7)
Using the dispersion equation w = kvy + wp» and the equation
Ok | 0t = —dw | 9z
we obtain
ok | 8t + vy 0k / 0z =0

i.e.

E=Fk (z — vt)
Equation (9.7) yields
4 = A (z — vyt)

which was to be proved.

We note that in the literature there is a known exact solution of the system of equations (3.1) in La-

grangian variables (see, e.g., [13, 14]). However, the use of this solution in the present study complicates
the difficulty of transforming in explicit form from Lagrangian variables to Euler variables.

e.0]

10.
11.

Thus, the nonlinear distortion of envelope waves is evidently possible only in the multivelocity streams.

The results obtained naturally refer not only to electron streams, but also to waves in a cold plasma.
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